Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces

نویسندگان

  • Luigi Ambrosio
  • Alessio Figalli
چکیده

We study points of density 1/2 of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density 1/2 is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup. Dans cet article nous étudions la structure de l’ensemble des points avec densité 1/2 pour les ensemble de périmètre fini dans un espace gaussien infini-dimensionnel. Nous démontrons que, comme dans le cas de dimension finie, la mesure de surface est concentrée sur cet ensemble de points. Ici, la définition de points avec densité 1/2 est donnée en utilisant le comportement ponctuel du semigroupe de OrnsteinUhlembeck.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Measures and Maximal L2 Regularity for Nonautonomous Ornstein-uhlenbeck Equations

We characterize the domain of the realizations of the linear parabolic operator G defined by (1.4) in L spaces with respect to a suitable measure, that is invariant for the associated evolution semigroup. As a byproduct, we obtain optimal L 2 regularity results for evolution equations with time-depending Ornstein-Uhlenbeck operators.

متن کامل

Functional Representations for Fock Superalgebras

The Fock space of bosons and fermions and its underlying superalgebra are represented by algebras of functions on a superspace. We define Gaussian integration on infinite dimensional superspaces, and construct superanalogs of the classical function spaces with a reproducing kernel – including the Bargmann-Fock representation – and of the Wiener-Segal representation. The latter representation re...

متن کامل

Ornstein-Uhlenbeck and renormalization semigroups

The Ornstein-Uhlenbeck semigroup combines Gaussian diffusion with the flow of a linear vector field. In infinite dimensional settings there can be non-Gaussian invariant measures. This gives a context for one version of the renormalization group. The adjoint of the OrnsteinUhlenbeck semigroup with respect to an invariant measure need not be an Ornstein-Uhlenbeck semigroup. This adjoint is the a...

متن کامل

Non-differentiable Skew Convolution Semigroups and Related Ornstein-Uhlenbeck Processes

Abstract: It is proved that a general non-differentiable skew convolution semigroup associated with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be extended to a differentiable one on the entrance space of the linear semigroup. A càdlàg strong Markov process on an enlargement of the entrance space is constructed from which we obtain a realization of ...

متن کامل

Linear Control Systems on Unbounded Time Intervals and Invariant Measures of Ornstein--Uhlenbeck Processes in Hilbert Spaces

We consider linear control systems in a Hilbert space over an unbounded time interval of the form y′ α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ], with bounded control operator B, under appropriate stability assumptions on the operator A. We study how the space of states reachable at time T depends on the parameter α ≥ 0. We apply the results to study the dependence on α of the Cameron–Martin space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011