Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces
نویسندگان
چکیده
We study points of density 1/2 of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density 1/2 is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup. Dans cet article nous étudions la structure de l’ensemble des points avec densité 1/2 pour les ensemble de périmètre fini dans un espace gaussien infini-dimensionnel. Nous démontrons que, comme dans le cas de dimension finie, la mesure de surface est concentrée sur cet ensemble de points. Ici, la définition de points avec densité 1/2 est donnée en utilisant le comportement ponctuel du semigroupe de OrnsteinUhlembeck.
منابع مشابه
Invariant Measures and Maximal L2 Regularity for Nonautonomous Ornstein-uhlenbeck Equations
We characterize the domain of the realizations of the linear parabolic operator G defined by (1.4) in L spaces with respect to a suitable measure, that is invariant for the associated evolution semigroup. As a byproduct, we obtain optimal L 2 regularity results for evolution equations with time-depending Ornstein-Uhlenbeck operators.
متن کاملFunctional Representations for Fock Superalgebras
The Fock space of bosons and fermions and its underlying superalgebra are represented by algebras of functions on a superspace. We define Gaussian integration on infinite dimensional superspaces, and construct superanalogs of the classical function spaces with a reproducing kernel – including the Bargmann-Fock representation – and of the Wiener-Segal representation. The latter representation re...
متن کاملOrnstein-Uhlenbeck and renormalization semigroups
The Ornstein-Uhlenbeck semigroup combines Gaussian diffusion with the flow of a linear vector field. In infinite dimensional settings there can be non-Gaussian invariant measures. This gives a context for one version of the renormalization group. The adjoint of the OrnsteinUhlenbeck semigroup with respect to an invariant measure need not be an Ornstein-Uhlenbeck semigroup. This adjoint is the a...
متن کاملNon-differentiable Skew Convolution Semigroups and Related Ornstein-Uhlenbeck Processes
Abstract: It is proved that a general non-differentiable skew convolution semigroup associated with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be extended to a differentiable one on the entrance space of the linear semigroup. A càdlàg strong Markov process on an enlargement of the entrance space is constructed from which we obtain a realization of ...
متن کاملLinear Control Systems on Unbounded Time Intervals and Invariant Measures of Ornstein--Uhlenbeck Processes in Hilbert Spaces
We consider linear control systems in a Hilbert space over an unbounded time interval of the form y′ α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ], with bounded control operator B, under appropriate stability assumptions on the operator A. We study how the space of states reachable at time T depends on the parameter α ≥ 0. We apply the results to study the dependence on α of the Cameron–Martin space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011